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An iterative least-squares procedure is described which can be used to optimize the fit of an idealized 
molecule of any point-group symmetry simultaneously to one or more data sets consisting of experi- 
mental positional coordinates. Least-squares parameters include up to three rotational and three 
translational parameters for each data set, and 3n-  6 model coordinates for a model of n atoms. Variation 
of the model point-group symmetry permits use of the statistical F-test in discriminating among pos- 
sibilities and reduces the influence of uncertainties in absolute data variances on the final choice. The 
procedure is used to derive a best model for the lumiflavin molecule from two data sets and to confirm 
the point-group symmetries and derive best models for several metal cluster compounds, including 
the non-heme ferroprotein model complex [Fe4S4(SCH2C6Hs)4] 2-. 

Introduction 

A procedure for fitting a partially constrained molec- 
ular model to experimental atomic positional coor- 
dinates would clearly have a number of uses in crystal- 
lography and those fields requiring derived structural 
information such as quantum chemistry. Some uses 
have been described by McLachlan (1972) and Nyburg 
(1974), who report least-squares procedures for the 
matching of a completely rigid model to an experi- 
mental data set (or, equivalently, of two data sets to 
one another). The Diamond (1965) procedure for 
fitting linked rigid groups in macromolecular chemistry 
is well known. Dollase (1974) has recently described 
a general method for fitting a variable model when the 
constraints may be described by isotropic or aniso- 
tropic dilation of atomic coordinates in a single rigid 
framework. 

The method described below is equivalent in result to 
Dollase's procedure, except that it permits optimization 
of a symmetry-constrained model to several data sets 
simultaneously and is thus slightly more powerful. It 
locates the least-squares fit to one or more data sets of a 
model whose point-group symmetry and, where re- 
quired, whose orientation is fixed but which is otherwise 
completely flexible, The Fortran program, MATCH, 
which performed the calculations described, is rather 
flexible in that any set may contain extra atoms or omit 
some model atoms. It calculates root-mean-square devia- 
tions between the model and each data set; the use of 
these and related quantities in identifying approximate 
point-group symmetry is described. 

Algorithm 

The function D to be minimized, the weighted sum of 
squares of deviations between model and data param- 

eters in an orthonormal model coordinate system is 
D= ~ WjkfVjmjk + Wj-- S/,mrb) 2, (1) 

jk 

wherej  and k denote respectively the data set and data 
atom within that set, Wjk is the appropriate (possibly 
anisotropic) weight, Vj and Wj are a rotation matrix 
and a translation vector which transform the jth data 
set to the model, the vector mjk denotes the coordinates 
of the kth data atom in a convenient orthonormal 
reference frame related to the crystallographic unit 
cell, Sbm is a fixed symmetry matrix which generates 
the kth model atom from an appropriate basis atom, 
and rb gives the parameters of the basis atom in the 
orthonormal basis-model coordinate system. For rea- 
sons discussed below, an isotropic weight is used for 
each atom. 

Symmetry matrices are specified by the user. For a 
model of C1 symmetry, each model atom is related to 
a separate basis atom and each symmetry matrix is a 
3 x 3 unit matrix. For a planar molecule of Cs symme- 
try, there is again a basis atom for every model atom, 

/lOO\ 
but the matrices are all |010].  

~000/ 
For a cube, a single basis atom and matrices such as 

-loo  
100], lOO/, etc., are required (where the first 
100/ 100/ 

parameter of the basis atom serves as the single 
variable parameter). 

The transformation matrix Vj clearly introduces a 
nonlinearity into the least-squares normal equations, 
however it is constructed. M A T C H  chooses one of a 
pair of product matrices corresponding to rotations 
a-,/~ and v about specified axes depending on the relative 
orientation of model and data set, determines initial 
values of a:,/1, and v from a trial orientation, and pro- 
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ceeds to solve the angular normal equations by the 
linearized Taylor series approximation commonly used 
in structure-factor refinement (Hughes, 1941). Because 
of the iterative nature of this process, the basis param- 
eters are held fixed at initial values until orientational 
convergence is reached (four-six cycles to a tolerance 
of 10 -6 radians in reasonable cases), then the linear 
normal equations constructed from the components of 
the various rb's are solved, and the whole process is 
repeated until shifts in all basis parameters fall below 
a tolerance which is typically I0 -4/~. Seldom are more 
than three or four cycles of basis refinement needed. 

This procedure seems to be less efficient than ones 
based on alternative formulations of the rotation ma- 
trix such as those given by Nyburg (1974) and Dollase 
(1974), but the total computation time is negligible 
in any case. The range of convergence seemed gener- 
ally to be quite large. Shifts of over 30 ° from the trial 
orientation have been observed. As Nyburg (1974) 
warns, very slow convergence may reveal inconsistent 
model and data chiralities. 

Constraints 
Allowance has been made in the program for x,/~, 

v and the components of W to remain fixed. In most 
cases this procedure permits one to constrain data sets 
in such a way that symmetry elements in a crystallo- 
graphically determined data set coincide with their 
counterparts in an appropriately oriented model. One 
or a pair of vectors and possibly some components of 
rb in models of some symmetries must be constrained 
during model refinement to prevent 'drift '  of the model. 
For most rapid convergence, constraints of this sort 
are imposed by unconstrained adjustment of the model, 
followed by a 'nudging' of the model to its constrained 
orientation and position in each cycle where necessary.* 

Weights 
The most appropriate weights would be those which 

permitted a variable component, wr=l/aZ~, to be 
assigned to each coordinate r, s, or t of each data atom. 
However, the information needed to perform this 
calculation is lost in publication of crystallographic 
papers, which rarely include covariance matrices for 
each atom. An estimate of the correlation of x, y, and z 
parameters in nonorthogonal crystal lattices is available 
(Templeton, 1959), but only for isotropic variance. In 
general, positional standard deviations derived from 
diffraction experiments are nearly isotropic for atoms 
which do not lie on special positions. MATCH uses 
individual isotropic weights 1/o -2 for each data atom, 
where ,,2_ 1/'r~2tr2 2 2 2 2 ,, - - ~ -  ,,x+b cry+c az). 

Significance tests 
The ratio (~w3D~l-~wADZ~o)/~wdDZi o for a given 

1 i i 

* Separation of orientational and basis refinement insures 
nonsingularity even in the absence of constraints in the basis 
matrix. 

refinement 0 and a more constrained refinement 1 can 
be tested against [g/(o-v)] Fg,o-v,~ where 3D~=D~o- 
D~m [equation (1)], g is the number of additional con- 
straints, o is the number of observations, v the number 
of parameters varied in refinement 0, and Fg.o-v., is the 
rejection point for the F distribution at significance 
level ~ (Hamilton, 1964, pp. 139, 208). Because the F 
test is a ratio, it minimizes the effect of an absolute 
scale error in the weights w~. Such errors are common 
in crystallographic investigations, and great judgment 
is required in placing reliance on results which are 
marginally significant by the more usual comparison 
of.discrepancies from a mean with 2a or 30-. 

Interpretation of results 
Interpretation of a model obtained by this procedure 

as being representative of the free molecule assumes 
the lack of systematic error in the overall experimental 
molecular configuration. One common problem espe- 
cially important in this regard is the apparent shrinkage 
of bonds due to anharmonic motion of the type com- 
monly described as 'riding' in which the mean path of 
a given atom is a curve. Molecular parameters derived 
from uncorrected atomic positions will of course reflect 
this error. In the cases described below, this error is 
minimized by the large size of the molecules, which 
results in most atoms having nearly linear paths of 
mean vibration. 

As noted by Dollase, bond lengths and angles ob- 
tained from the least-squares model are not identical 
with those obtained by averaging values of individual 
bonds or angles which would be equivalent under the 
deduced symmetry. The differences are generally small, 
however. 

Examples 
Lumiflavin 

This compound, C13H~zN402, is an aromatic hetero- 
cycle and is one of the simpler molecules containing 
the redox-active isoalloxazine component of flavoco- 
enzymes (Wang & Fritchie, 1973). It is nearly but not 
exactly planar in most crystals and has been widely 
studied. It thus serves as an excellent example of a 
molecule of low symmetry whose coordinates are to be 
optimized for purposes of quantum mechanical calcula- 
tions. The set of r, s, and t coordinates in Table 1 is the 
result of simultaneously optimizing a planar model 
and two accurate data sets, one of which carries an 
extra atom. Root-mean-square deviations generally 
average about 0.01 A in r and s. 

Although not precisely illustrated in this example, it 
should be obvious that the process of optimizing a 
planar model to one data set is equivalent to a least- 
squares plane calculation for the data set. 

[Fe4S4(S C HzC 6 H5)4] z - 
Averill, Herskovitz, Holm & Ibers (1973) have re- 

cently reported the crystal structure of this ion as the 
tetraethylammonium salt. It is the best structural 
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Table 1. Least-squares lumiflavin molecule 

All t coordinates are zero. * These parameters fixed the origin 
and orientation. Uncertainties are approximately 0.01 A,. 
Atom r s 
N(1) 2"298 A 0* A 
C(2) 3"480 -0"685 
N(3) 3 -488  -2"094 
C(4) 2"373 - 2"873 
C(4a) 1.092 - 2.126 
N(5) -0-023 -2-796 
C(5a) - 1-186 -2.075 
C(6) -2.413 -2.776 
C(7) -3.614 -2.117 
C(8) -3.616 -0-704 

Atom r s 
C(9) -2"434 A 0-006 A 
C(9a) -1.211 -0-667 
N(!0) 0* 0* 
C(10a) 1.180 -0.680 
0(2) 4-542 -0.108 
0(4) 2-430 - 4-089 
C(7m) -4.899 -2-875 
C(8m) -4"914 0"073 
C(10) 0-019 1-471 

The least-squares transformation equations from crystallo- 
graphic fractional coordinates x to model coordinates r are r = 

(XR)x + T, where 
( 5-9325-6.1327 4.6035) ( - 1 - 2 9 9 )  

XR = 4.3917 7.4116 4.0518 and T= 5.627 
- 13.6400 -0.2810 6.4015 1.941 

for 3-methyllumiflavin (Norrestam & Stensland, 1972), and 
( 2.8506 0.7891-8.4351) ( -11-846 ) 

XR= -0.5409 -5.8478 -1-9262 and T= .638 
6-5665 3.2259 - 6-5584 1.652 

for 10-methylisoalloxazine (Wang & Fritchie, 1973). 

CH3 

ga zI.4a 3 NH 

o 

model currently available for the cuboid iron-sulfur 
cluster in non-heme iron proteins. These authors have 
shown by techniques similar to those reported here, 
but restricted to models of D2e symmetry, that D2e 
rather than Td is the proper choice of point-group 
symmetry. This ion is considered here to illustrate the 
use of the F-test and 2 '2 tests (Hamilton, 1964) in 
choosing the model of best fit. The variable parameters 
are rF, and rs for Ta symmetry, and rFe, tF~,rs, and 
ts for DEe symmetry. These are found to be 0.971, 
1.275, 0.981, 0.950, 1.289 and 1.246 A respectively. 

Values of ~wi(AD~) 2 are 8762 and 498* for the two 
i 

structures. We thus compare [(8762-498)/498]= 16.6 
with (~-7) F~.t7. At a confidencec~ of 0.005, F~.t7 is 10.38, 
and the D2e model represents a clear improvement. The 
2"2 test (Averill et al., 1973) is performed in this case with 
17 or I6 degrees of freedom, and we have rejection 
levels of 33.4 and 32.0 respectively for ~w~(AD~) 2, under 

the assumption that correct values have been used for 
aoio. Both models are statistically rejectable, but as 

* This value is slightly smaller than the quantity 21a 2 cal- 
culated by Averill et al. because a weighted centroid is used 
here. 

Averill et al. note, acceptance of the D2a hypothesis 
implies that the average a is underestimated by a factor 
of at least (498/33.4)1/2_~3-9. Underestimation by a 
factor of 2 is perhaps reasonable, and the remaining 
discrepancy can be considered possible distortion due 
to crystal forces. 

Fe4C4 clusters 

Two species are considered, neutral [(CsHs)4Fe4(CO)4 ] 
(Neuman, Toan & Dahl, 1972) and monocationic 
[(CsHs)4Fe4(CO)4] + (Toan, Fehlhammer & Dahl, 
1972). Following Averill et al., we have obtained 
three models of D2d symmetry, which yield ~wi(AD~) 2 

t 
of 221, 300, and 320 for the neutral cluster. The Te 
model gives 341. The F-test quotient (341-221)/221 or 
0-543 is to be compared with (T-~)Fa,w.01 = 0"589, and 
the improvement of the best D2e model over the Td 
model is found to be not significant at the 99 % level. 
The Tn model is therefore considered the best descrip- 
tion. For this model, rvo=0"891 (5) A, and rc= 1-08 (1) 
A, giving Fe-Fe=2.521 A and Fe -C=l -99  A, with 
uncertainties of approximately 0.010 A and 0.011 A 
respectively. 

For the cation [(CsHs)4Fe4(CO)4] +, the three D2e 
models yield ~iw~(AD~)2= 129, 473, and 473, compared 
with 589 for the Ta model. Although the Tn error sum 
for the cation is not much larger than that in the 
neutral cluster, the F-test yields an improvement ratio 
of 3.57 which is highly significant at the 99 % level, and 
greatly exceeds even (1-~)F1.17,0o5=0-610. The cation is 
thus considered to have symmetry D2e. 

The least-squares parameters for the best D2e model 
are rve=0"882, tee=0"866, rc= 1"05 and tc= 1.14, with 
uncertainties of approximately 0.004 A for Fe and 
0"02 A for C. The resulting bond lengths are Fe-Fe = 
2-493 A (2 bonds) and 2-472 A (4 bonds); F e - C =  
1"96 A (4 bonds) and 2.02 A (2 bonds). 

This work was supported by the National Institutes 
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